The management of large vessel vasculitides

Elena Galli, Chiara Marvisi, Gilda Sandri, Carlo Umberto Manzini, Carlo Salvarani

Rheumatology Unit, University of Modena and Reggio Emilia, Modena, Italy

Abstract

Giant cell arteritis (GCA) and Takayasu arteritis (TAK) represent the most common large vessel vasculitides (LVV). An early recognition of these conditions is crucial in order to start a prompt treatment to prevent severe ischemic complications, such as irreversible visual loss in GCA and cardiovascular or cerebrovascular accidents in TAK. Isolated glucocorticoids (GCs) still remain the cornerstone of GCA therapy. However, long-term treatment with GCs is burdened by an important toxicity. Furthermore, relapses are frequent during the follow-up period and relapsing patients have to cope with a longer duration of the GC therapy and a higher cumulative GC dose. On the other hand, TAK treatment usually relies on immunosuppressors in addition to GCs from the beginning. Also, since TAK patients are in general young women with a progressive disease, it is essential to treat this vasculitis with steroid-sparing drugs in order to avoid excessive GC exposure.

For this reason, efforts have been made to discover new therapeutic options able to reduce the cumulative GC dose that is strictly related to GC-toxicity. In recent years, new advances in the management of LVV have become available and have changed the therapeutic approach to these diseases. The aim of this review is to report new evidence of treatment efficacy and safety in LVV.

Introduction

Giant cell arteritis (GCA) and Takayasu arteritis (TAK) represent the most common large vessel vasculitides (LVV), a group of diseases which primarily affect the aorta and its major branches. They both are characterized by inflammation of large and medium-sized vessels, which could lead over time to structural damage and changes in their diameter (stenosis and/or dilatation). The spectrum of clinical manifestations is broad, ranging from non-specific constitutional symptoms to more characteristic manifestations. Early detection of these conditions is crucial in order to start a prompt treatment to prevent severe ischemic complications, such as irreversible visual loss in GCA. GCA typically affects elderly people, while TAK is much more common in women below the age of 40.

Over the last few years, new advances in the management of LVV have become available and have changed the therapeutic approach to these diseases. Isolated glucocorticoids (GCs) still remain the cornerstone of GCA therapy, while the use of steroid-sparing drugs is limited to steroid-resistant cases. On the other hand, TAK treatment usually relies on immunosuppressors in addition to GCs from the beginning.

The aim of this review is to report new evidence of treatment efficacy and safety in LVV.

Management of giant cell arteritis

Role of glucocorticoids

In most cases, adequate GC doses quickly suppress clinical features and prevent the risk of ischemic complications, such as visual loss or cerebrovascular accidents, which occur in a minority of patients once the GC therapy has been started. However, long-term treatment with GCs is burdened by an important toxicity, since side effects are observed in more than 50% of patients. Furthermore, relapses are frequent during the follow-up period (ranging from 34% to 74.5%) and relapsing patients have to cope with a longer duration of the GC therapy and a higher cumulative GC dose. The most important adverse events are infections, diabetes, bone fractures (vertebral fractures, above all) and cataracts. For this reason, efforts have been made to discover new therapeutic options able to reduce the cumulative GC dose that is strictly related to GC-toxicity.

Role of non-biological immunosuppressive drugs

The role of methotrexate (MTX) as a steroid-sparing agent in GCA has been assessed in 3 randomized controlled trials (RCTs)
and 1 meta-analysis, with conflicting results. In the first RCT Jover et al. showed that MTX in addition to GCs was able to reduce the number of relapses and the total cumulative GC dose in GCA patients. Conversely, the other two studies were negative, not supporting the additional use of MTX to control disease activity or to decrease the cumulative dose and toxicity of GCs. In the meta-analysis of the 3 RCTs MTX appears to be more effective than GCs alone in reducing relapses and exposure to GCs only after 24-26 weeks of treatment, thus showing that there is probably a latency period before MTX exerts its pharmacologic action. Overall, MTX has a small and late steroid-sparing effect without reducing the incidence of steroid-related side effects. According to 2018 Update of EULAR recommendations, which are intended to provide advice on the management of LVV to clinicians, isolated GCs represent the cornerstone of GCA treatment. However, in patients with refractory or relapsing disease or at high risk of developing GC-related side effects, MTX should be added to GCs as a second choice.

There are no RCTs on the usefulness of leflunomide (LEF) as a steroid-sparing agent in GCA. Two retrospective studies reported that LEF can be effective and safe in managing this LVV. Besides, in a prospective observational study most of the patients treated with LEF (56.7%) in addition to GCs were withdrawn from GCs at week 48 from the beginning of therapy, while none in GCs-only group was able to discontinue GCs. Given the design and the relatively small number of patients described in these studies, LEF is not among the recommended drugs which can be added to GCs in refractory/relapsing patients with GCA.

No high-quality evidence support the efficacy of cyclosporine (CysA) or azathioprine (AZA) as steroid-sparing agents in newly diagnosed and relapsing patients with GCA. Indeed, after 6 months of therapy no statistically significant difference was seen in the cumulative GC dose between patients treated with a combined regimen (GCs + CysA) and those treated with GCs alone (1.41 g versus 1.44 g, respectively). The lack of a steroid-sparing effect with CysA was confirmed in an open-label, randomized controlled trial published some years later by the same group. Moreover, most of the 29 patients who received CysA developed side effects, such as new onset hypertension or increase in creatinine levels. Lastly, the results of a trial aimed at exploring the effectiveness of AZA were hampered by methodological issues, thus not allowing to draw definitive conclusions about the role of this drug as a steroid-sparing agent in GCA.

Role of biological immunosuppressive drugs

Since biological immunosuppressive drugs (bDMARDs) were discovered, some trials have investigated their effectiveness in GCA patients. Indeed, it is well known that cytokines, particularly IL-6, but also TNF-alpha may play a pivotal role in the etiopathogenesis of GCA, thus representing potential targets for bDMARDs.

IL-6 is a key driver in GCA etiopathogenesis. Levels of IL-6 correlate well with disease activity. Besides, it is noteworthy that subjects with persistently elevated IL-6 levels are at higher risk of relapse/recurrence of GCA, despite proper GC therapy. Lastly, high expression of IL-6 has been found in the arterial wall of patients with inflamed temporal arteries. The pivotal role of the IL-6 pathway in the pathogenesis of GCA makes tocilizumab (TCZ) an attractive therapeutic option for GCA, given its ability to inhibit IL-6. Some case reports and observational studies suggested that TCZ was effective in treating GCA. Two subsequent RCTs have confirmed its effectiveness. The first RCT was published in 2016. This study enrolled 30 patients diagnosed with GCA according to 1990 American College of Rheumatology (ACR) criteria for the classification of GCA. Among them, 20 subjects received intravenous TCZ (8 mg/kg/4 weeks) in addition to GCs, while the remaining 10 patients received placebo and GCs. Eighty-five percent of patients who received TCZ achieved the primary outcome (complete remission by week 12 at a prednisolone dose of 0.1 mg/kg per day). Moreover, 85% of subjects treated with TCZ experienced a relapse-free survival by week 52, with a statistically significant difference compared with the placebo arm (risk difference 65%, P=0.001). The cumulative prednisolone dose after 52 weeks was significantly lower in TCZ group compared to placebo (43 mg/kg vs 110 mg/kg, P=0.0085). TCZ-treated patients received less than half the cumulative GC dose of patients treated with placebo. No safety concerns in the TCZ group arose from this trial.

The Trial of Tocilizumab in Giant Cell Arteritis Actemra (GiACTA) published in 2017 had the aim to evaluate the efficacy and safety of TCZ in patients with newly diagnosed or recurrent GCA. This study included 251 subjects in 14 countries. Patients were randomly assigned with a 2:1:1:1 ratio to receive subcutaneous TCZ (at a dose of 162 mg) weekly or every other week, combined with a 26-week prednisone taper, or placebo combined with a prednisone taper over a period of either 26 weeks or 52 weeks. TCZ, administered weekly or every other week, combined with a 26-week prednisone taper was superior to either 26-week or 52-week prednisone tapering plus placebo with regard to sustained GC-free remission in patients with GCA, which was the primary endpoint of the trial. Indeed, 56% of subjects treated with TCZ every week and 53% of those in treatment with TCZ every other week achieved a sustained remission at week 52. Conversely, this outcome was reached only by 18% of subjects who received the placebo and had a 52-week prednisone taper and by 14% of patients who received the placebo and the 26-week prednisone taper.

TCZ also had a powerful steroid-sparing effect in TCZ-treated patients receiving about half the cumulative dose of patients treated with GCs only. As to safety concerns, serious adverse events were similar across the four groups. In particular, no deaths, nor bowel perforations were reported.

In light of the encouraging results from these studies, according to EULAR recommendations, TCZ should be added to GCs as a first choice in patients with a refractory or relapsing GCA or at high risk of GC-related adverse events or complications. However, it is still unknown which patients could benefit from TCZ and whether this bDMARD should be used for all newly diagnosed GCA patients or only for patients at high risk of developing serious GCs side effects or for subjects with a relapsing disease. An open question concerns the optimal duration of the treatment with TCZ, which still needs to be defined. The last point to consider is whether the maintenance treatment with a conventional immunosuppressive drug should be started once disease remission has been obtained with TCZ to maintain the remission after the discontinuation of TCZ.

In a small RCT which included 44 newly diagnosed GCA patients treated with GCs as induction therapy, infliximab (IFX) did not show superiority over GCs alone in reducing the number of relapses. Moreover, IFX had no steroid-sparing effect, while it increased the incidence of infections compared to GCs only. Similarly, the role of adalimumab (ADA) as a steroid-sparing agent was evaluated, too. A double-blind, multicenter controlled study by Seror et al., which enrolled 70 patients newly diagnosed with GCA, failed to achieve the primary endpoint, since the 34 patients who received ADA in addition to a standardized GC therapy were not able to taper more rapidly GCs compared with the placebo arm. However, a GC-sparing effect for IFX and ADA may not be completely excluded, since the reliability of the results of the studies
mentioned above could have been affected by the limited number of patients enrolled.

Etanercept (ETN) seems to show a small steroid-sparing effect in GCA patients with GC-related side effects, as demonstrated in a double-blind placebo-controlled trial. Even in this case, the small number of patients included did not allow to draw definitive conclusions.31

Abatacept (ABA) is a recombinant fusion protein which modulates CD28-mediated T-cell costimulation. The Vasculitis Clinical Research Consortium assessed the efficacy of ABA in managing newly diagnosed or relapsing GCA patients treated with GCs in a RCT. The relapse-free survival rate at 12 months (primary endpoint) was 48% for those receiving abatacept and 31% for those receiving placebo. The difference was statistically significant (P=0.049).32 Therefore, in patients with GCA, the addition of ABA to a treatment regimen with GCs may mildly reduce the risk of relapse.

The role of ustekinumab (UST) as a blocker of IL-12/23 inflammatory pathway in GCA was evaluated in a prospective open-label study by Conway et al. A total of 70 patients with refractory GCA received subcutaneously UST 90 mg every 12 weeks. A statistically significant difference between week 0 and week 52 of treatment was found in the median daily prednisolone dose and in C-reactive protein (CRP) levels, which decreased considerably. Besides, 24% of subjects were able to discontinue GCs completely and no patients experienced a GCA relapse during UST treatment.33 In summary, anti-TNF-alpha agents are not useful in managing GCA and the role of ABA and UST has not been well defined yet.

All the immunosuppressive drugs investigated in RTCs and used in GCA are summarized in Table 1. Due to the low quality of the trials, those on AZA and CysA were not included in the Table.

Role of other biological immunosuppressive drugs and small molecules

Presently, the introduction of other drugs, with different mechanisms of action, routes and frequency of administration such as rituximab (RTX), anakinra, gevokizumab and, more recently, Janus kinase inhibitors (JAKi), has shed light on the possibility of using alternative molecules which could play a pivotal role in blocking inflammatory cascade. More in detail, tofacitinib has shown to modulate innate and adaptive immunity in vessel wall in an animal model.14 One phase 2 trial of baricitinib (NCT03026504) and one phase 3 trial of upadacitinib (NCT03725202) in patients with relapsing GCA are currently ongoing.

Management of Takayasu arteritis

Role of glucocorticoids

GCs represent the mainstay for TAK treatment. However, about 80% of TAK patients have a progressive or relapsing/remitting disease. Serial angiographic evaluations have shown that new lesions can be found in 61% of patients, even when the arteritis is thought to be in remission and relapses and anatomic progression usually occur after steroid tapering.35 Since in TAK vasculitis patients are commonly young women and the disease is often progressive, there is the need to introduce drugs with a powerful steroid-sparing effect in order to minimize GCs exposure.

Role of non-biological immunosuppressive drugs

RCTs on the role of conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) in TAK are still lacking. Hoff-
Table 1. Immunosuppressive drugs investigated with randomized controlled trials in Giant cell arteritis (due to the low quality of the trials, those on azathioprine and cyclosporine were not included in the Table).

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Study ID</th>
<th>Study design</th>
<th>N</th>
<th>Intervention arm</th>
<th>Control arm</th>
<th>Outcomes</th>
<th>Outcome measures</th>
<th>Results (i)</th>
<th>Results (c)</th>
<th>Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTX</td>
<td>10 mg/week</td>
<td>Jover et al.</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>42 (i) vs 21 (c)</td>
<td>PRED p.o. (10 mg/day) + MTX p.o. (10 mg/week)</td>
<td>PRED + placebo</td>
<td>Safety and efficacy of combined therapy with PRED + MTX</td>
<td>Number of relapses</td>
<td>9 (45%)</td>
<td>16 (84.2%)</td>
<td>Comparable between the groups</td>
</tr>
<tr>
<td>MTX</td>
<td>Up to 15 mg/week</td>
<td>Hoffman et al.</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>98 (i) vs 47 (c)</td>
<td>PRED p.o. (1 mg/kg/day) + MTX p.o. (up to 15 mg/week)</td>
<td>PRED + placebo</td>
<td>Efficacy of combined therapy with PRED + MTX</td>
<td>First disease relapse (12 months)</td>
<td>31 (74.8%)</td>
<td>31 (71.6%)</td>
<td>Comparable between the groups</td>
</tr>
<tr>
<td>MTX</td>
<td>7.5 mg/week</td>
<td>Spiera et al.</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>21 (i) vs 12 (c)</td>
<td>PRED p.o. (7.5 mg/kg/day) + MTX p.o. (7.5 mg/kg/week)</td>
<td>PRED + placebo</td>
<td>Efficacy of MTX in disease-controlling and in GCs-sparing</td>
<td>Cumulative PRED dose (mg)</td>
<td>68 ± 21.6 mg</td>
<td>60 ± 21.6 mg</td>
<td>Comparable between the groups</td>
</tr>
<tr>
<td>TCZ</td>
<td>8 mg/kg/4 weeks</td>
<td>Villiger et al.</td>
<td>Phase 2, randomized, double-blind, placebo-controlled trial</td>
<td>30 (i) vs 20 (c)</td>
<td>PREDNL p.o. (1 mg/kg/4 weeks) + TCZ i.v. (8 mg/kg/4 weeks)</td>
<td>Placebo</td>
<td>Efficacy and safety of TCZ</td>
<td>Proportion of patients who achieved complete remission at a PREDNL dose of 0.1 mg/kg/day (week 12)</td>
<td>17 (85%)</td>
<td>4 (40%)</td>
<td>Comparable between the groups</td>
</tr>
<tr>
<td>TCZ</td>
<td>161 mg/week</td>
<td>Stone et al.</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>20 (i) vs 10 (c)</td>
<td>PREDNL p.o. (161 mg/week)</td>
<td>Placebo + 26-week GC taper p.o. (0.1 mg/kg/day)</td>
<td>Superiority of TCZ over placebo in inducing sustained remission</td>
<td>Rate of participants in sustained GC-free remission at week 52 vs placebo + 26-week GC taper</td>
<td>56% (i)</td>
<td>53% (c)</td>
<td>Comparable between the groups</td>
</tr>
<tr>
<td>IFX</td>
<td>5 mg/kg/8 weeks</td>
<td>Hoffman et al.</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>44 (i) vs 28 (c)</td>
<td>IFX i.v. (5 mg/kg) at weeks 0, 2, 6, then every 4 weeks + GCs p.o.</td>
<td>Placebo + GCs</td>
<td>Efficacy and safety of IFX in maintaining GC-induced remission</td>
<td>Proportion of relapse-free patients through week 22</td>
<td>12 (44%)</td>
<td>8 (59%)</td>
<td>Comparable between the groups</td>
</tr>
<tr>
<td>IFX</td>
<td>25 mg/hexa week</td>
<td>Martínez-Tobado et al.</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>17 (i) vs 9 (c)</td>
<td>ETN s.c. (25 mg/hexa week) + PRED p.o. (≥ 10 mg/day)</td>
<td>Placebo + PRED p.o. (≥ 10 mg/day)</td>
<td>Efficacy and safety of ETN</td>
<td>Proportion of patients able to discontinue the GC therapy and control of disease activity (12 months)</td>
<td>50%</td>
<td>22.2%</td>
<td>Comparable between the groups</td>
</tr>
<tr>
<td>IFX</td>
<td>5 mg/kg/8 weeks</td>
<td>Hoffman et al.</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>44 (i) vs 28 (c)</td>
<td>IFX i.v. (5 mg/kg) at weeks 0, 2, 6, then every 4 weeks + GCs p.o.</td>
<td>Placebo + GCs</td>
<td>Efficacy and safety of IFX in maintaining GC-induced remission</td>
<td>Proportion of relapse-free patients through week 22</td>
<td>12 (44%)</td>
<td>8 (59%)</td>
<td>Comparable between the groups</td>
</tr>
</tbody>
</table>

To be continued on next page
Table 1. Continued from previous page.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Study Design</th>
<th>N</th>
<th>Randomized controlled</th>
<th>Intervention arm Control arm</th>
<th>Outcomes</th>
<th>Efficacy and safety</th>
<th>Results (±SD)</th>
<th>Median time to first relapse (months)</th>
<th>Proportion of patients who achieved remission-free survival after 12 months</th>
<th>Mean PRED daily dose at week 26 (mg/kg)±0.05</th>
<th>Median PRED daily dose at week 26 (mg/kg±0.07)</th>
<th>Percentage of patients in remission</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABA</td>
<td>40 mg/2 weeks</td>
<td>20 (80%)</td>
<td>15 (75%) vs 5 (25%)</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>Detection of clinical response</td>
<td>24 patients (70.59%) in intervention arm experienced at least one adverse event compared to none in the placebo group.</td>
<td>Senior adverse events occurred in 5 patients (14.71%) in intervention arm (17%) and none in the placebo group.</td>
<td>0.12 mg/kg±0.05</td>
<td>24 weeks (95% CI 17 to 31)</td>
<td>20 (58.9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADA</td>
<td>40 mg/2 weeks</td>
<td>20 (80%)</td>
<td>15 (75%) vs 5 (25%)</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>Detection of clinical response</td>
<td>24 patients (70.59%) in intervention arm experienced at least one adverse event compared to none in the placebo group.</td>
<td>Senior adverse events occurred in 5 patients (14.71%) in intervention arm (17%) and none in the placebo group.</td>
<td>0.12 mg/kg±0.05</td>
<td>24 weeks (95% CI 17 to 31)</td>
<td>20 (58.9%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A RCT showed that the addition of ABA to GCs did not reduce the risk of relapse in patients with TAK. In a pilot study 40 mg of UST were administered to 3 patients with refractory TAK at day 0 and at day 28. Inflammatory markers decreased at day 84, but vascular wall enhancement at MRA still remained.

In summary, even though RCTs on anti-TNF-alpha agents are lacking, they can be useful in treating TAK in clinical practice. TCZ was favored over placebo in time to first relapse, despite this result did not reach a statistically significant difference, probably because of the small number of patients enrolled in the study. Therefore, according to EULAR recommendations, anti-TNF-alpha agents or TCZ should be considered as a second-line therapy when a cs-MARD has failed in inducing remission or in cases of relapsing disease. As shown by RCT results, ABA is not effective in managing TAK. Experience with RTX and UST is too limited to draw definitive conclusions.

All the immunosuppressive drugs investigated with RTCs and used in TAK are shown in Table 2.

Role of small molecules

Lastly, there are two ongoing studies (NCT04299971; NCT04161898) addressing the potential role of JAKi in blocking cytokine signaling dependent on JAK3 and JAK1 in TAK.

Revascularization procedures

It is not uncommon for patients with TAK to undergo surgical interventions. The endovascular ones mainly encompass percutaneous transluminal angioplasty (PTA) and stent placement, while open surgery involves bypass grafting, endarterectomy and patch angioplasty. Outcomes of endovascular interventions were compared to those of open surgery in a meta-analysis. Endovascular procedures seemed to be burdened by a higher risk of restenosis. There were no differences in terms of mortality rates between the two groups.

Restenosis is a common complication, being reported in 17-60% of patients treated with surgical interventions (stenting
Table 2. Immunosuppressive drugs investigated with randomized controlled trials in Takayasu arteritis.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Study ID</th>
<th>Intervention arm</th>
<th>Control arm</th>
<th>Outcomes</th>
<th>Results (i)</th>
<th>Results (c)</th>
<th>Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCZ</td>
<td>162 mg/week</td>
<td>Nakaoka et al.</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>GCs p.o. + placebo</td>
<td>Time to relapse of TAK (defined criteria)</td>
<td>HR 0.41 (95% CI 0.15 – 1.10)</td>
<td>HR 0.70 (95% CI 0.29 – 1.70)</td>
<td>Serious adverse events were reported in one placebo-treated patient.</td>
</tr>
<tr>
<td>ABA</td>
<td>10 mg/kg/4 weeks</td>
<td>Langford et al.</td>
<td>Randomized, double-blind, placebo-controlled trial</td>
<td>ABA i.v. 10 mg/kg on days 1, 15 and 29 and week 8 + PRED p.o. 40–60 mg/day followed by a tapering schedule. From week 12, if patients in remission continue GCs + ABA.</td>
<td>Relapse-free survival rate at 12 months</td>
<td>40%</td>
<td>57%</td>
<td>Comparable between groups. 12 serious adverse events occurred in the ABA-treated arm, while 9 serious adverse events occurred in the placebo arm.</td>
</tr>
</tbody>
</table>

Abbreviations: ABA, abatacept; c, control arm; GC, glucocorticoids; i, intervention arm; i.v., intravenous route; PRED, prednisone; s.c., subcutaneous route; TCZ, tocilizumab.

References

51. Terao C, Yoshifuji H, Nakajima T, et al. Ustekinumab as a ther-
